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Radial fingering in a Hele Shaw cell 

By LINCOLN PATERSON 
Department of Engineering Physics, Research School of Physical Sciences, 

The Australian National University, Canberra, 2600, Australia 
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The results of experiments involving instability, known as fingering, in a circular 
Hele Shaw cell with inward and outward flow are presented. The width of fingers in 
this situation is examined, and an approximate equation for the growth of fingers is 
proposed. The equation ra = cos (no) is shown to fit the shape of long fingers. 

1. Introduction 
When one fluid displaces another in a porous medium, the displacement can be 

either stable or unstable. If the displacement is unstable, long ‘fingers ’ of the displacing 
fluid can penetrate into the displaced fluid. This phenomenon is known as fingering. 
(See, for example, Richardson 1961.) In  horizontal flow, fingering occurs when a less 
viscous fluid displaces a more viscous fluid. Viscous fingering is not established as a 
real phenomenon at reservoir conditions (Settari, Price & Dupont 1977). However, 
there have been a number of experiments with models that have established it as a 
phenomenon in the laboratory (for example, van Meurs 1957; Habermann 1960). 

The Hele Shaw cell is a device for investigating two-dimensional flow in porous 
media. It is based on the similarity between the differential equations governing 
saturated flow in a porous medium and those describing the flow of a viscous fluid in 
the narrow space between two parallel planes. Linear fingering in a Hele Shaw cell is 
a subject that has been studied by many authors (for example, Saffman & Taylor 1958; 
Chuoke, van Meurs & van der Poel 1959; Wooding 1969; Gupta, Varnon & Greenkorn 
1973; White, Colombera & Philip 1976; Pitts 1980). 

Linear fingering refers to fingering that occurs with a linear displacement and an 
initially planar interface. One of its main sources of interest is the oil industry, where 
it reduces the amount of oil which is economically recoverable. In practice, when 
fluids are injected into the ground, they are injected through a well which, in effect, 
is a point source. Displacement (initially at  least) is in the radial direction. One would 
therefore consider the radial model to be more appropriate to practical situations than 
the linear displacement model. Bataille (1968) and Wilson (1975) have both con- 
sidered the linear perturbation analysis for a circular interface in a Hele Shaw cell, but 
neither author has gone far beyond this. 

The dual motivation behind this study is its relevance to the underground storage 
of gas (Carden & Paterson 1979; Paterson 1980) and to the recovery of oil. Hence, 
both outward fingering (gas injection) and inward fingering (oil recovery) are examined. 
The growth of fingers is examined in four stages: the initial growth, intermediate 
growth, quasi-infinite fingers and extended growth and splitting. The significant 
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FIGURE 1. The pattern which occurs after the injection of' air 
into a Hele Shaw cell filled with glycerine. 

results of this paper are the examination of the minimum wavelength of a finger in the 
radial situation, the derivation of an approximate form of the growth rate of the 
fingers and the derivation of the equation describing the shape of a long finger. These 
results are compared with Hele Shaw cell experiments which are typified in figure 1 
by a pattern which result'ed from the injection of air into a Hele Shaw cell filled with 
glycerine. 

2. Apparatus 
For a discussion on the relevance of Hele Shaw cells to  flow in porous media, the 

reader is referred to the papers on linear fingering cited above and to Bear (1973). It 
must be acknowledged that their relevance is not completely certain, as pointed out 
by Wooding & Morel-Seytoux (1976) in an article which contains a review of linear 
fingering. 

The essential parts of the circular Hele Shaw cell used in the experiments consisted 
of two 13 mm thick glass disks, 600mm in diameter, spaced a few millimetres apart. 
A system of screws, sprockets and a chain was used to change the spacing between the 
disks while keeping them parallel. A hole was drilled in the centre of one of the disks so 
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that fluids could be injected and withdrawn. With the disks very close together, 
a sodium lamp was used to determine the deviations in spacing by creating inter- 
ference fringes which were then counted. The disks had a variation in spacing of about 
0.05 mm. Most experiments were conducted with a plate spacing of 1.50 mm. During 
an experiment, pressure changes caused the disks to flex slightly, introducing some 
additional variation in spacing. Strain calculations (from Roark 1965) indicated that 
the additional variations in spacing should be less than O.lmm for the regions of 
interest in the experiments.t At theouter perimeter of the disks a retainer maintained 
a uniform head of liquid. 

3. Outward fingering 
3.1. Init ial  growth 

The outward flow experiments commenced with the Hele Shaw cell filled with the more 
viscous fluid. The less viscous fluid was then injected at the centre a t  a constant rate, 
forming an initially circular interface when viewed from above. As the bubble 
developed, the interface began to finger. The criteria for this will now be discussed. 

Chuoke et al. (1959),  Scheideggar (1960a, b )  have made studies of the initial 
growth of fingers from a linear interface. In  particular, Chuoke et al. have shown that 
surface tension prevents fingers from occurring below a certain wavelength, where 
wavelength is defined as peak-t,o-peak separation. 

The problem of the instability of an initially circular interface has been examined 
elsewhere (Bataille 1968; Wilson 1975). Since the analysis is illustrative and beneficial 
to the subsequent analysis, a version of the derivation will be included here. 

Darcy's law is the equation governing the velocity of flow v in a porous medium or 
a Hele Shaw cell as a function of pressure p ,  

v = - MVp,  (1) 

where ill is the fluid mobility. Mobility in a Hele Shaw cell is a function of the plate 
spacing b and the fluid viscosity p:  

M = b2/12p.  (2) 

I n  the problem under consideration, the subscripts 1 and 2 will be used to refer to the 
inner and outer fluids respectively. For incompressible flow, Darcy's law in polar 
co-ordinates leads to 

where $ j  = J 4 p j  is the velocity potential. 
Part of a circular interface with a sinusoidal perturbation is shown in figure 2. The 

source has volume flow rate Qb and the circle has radius R, so that, for unperturbed 

if R = 0 a t  t = to. For both inflow and outflow, Q(t - to) > 0. The velocity potential of 
the steady flow can be derived from (3) as 

t Using equation (15), it is possible to show that this variation in spacing will cause less than 
7 "'0 variation in the width of fingers: certainly well within the realm of the statistical variations, 
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FIGURE 2. A circular interface of radius R with a wavelike perturbation a. 

which satisfies the continuity of pressure and radial velocity a t  the interface r = R(t). 
As the interface moves, it experiences perturbations due to inhomogeneities. Any 

perturbation can be expressed as an infinite sum of wavelike functions. For the 
purpose of the following linear analysis, it is sufficient to consider a single wavelike 
perturbation a with amplitude A ,  as shown in figure 2, so that 

a = A f ( t )  exp (in@, n = 1 ,2 ,3 ,  . .., (6) 

where f ( t )  represents the dependence of the amplitude on time. 
The required solution of (3), with ,8 to be determined, is 

The condition of continuity a t  the perturbed interface (to first order a t  1’ = R( t ) )  
determines P as 

The pressure drop across the interface depends on the surface tension r~ through (i ; a+d2a/dd2 
R2 p l - p 2 = u  -+-- 

to first order, since r = R + a. Using (5)-(9) gives 

(9) 

If MI B M,, (10) becomes 

The condition df /d t  = 0 gives rise to a minimum wavelength A, for a perturbation to be 
maintained. With this condition, (1  1) can be solved for n to give 

n, = - 
[ 2 ? g J  + + I t  - +. 
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Since n = 2nR/A,  this gives the critical wavelength A, as 

A, = 2 n R / ( ( m ( T + : ) " - f ) .  &R 

Maximum growth occurs when 

which, from (1 1))  is 

or substituting n = 2nR/A leads to a wavelength of maximum growth rate, A,: 

51 7 

(13) 

The net result is as follows. One would expect that, when the circumference of the 
injected 'bubble ' is less than the critical wavelength, the displacement is stable and 
the interface remains a circle centred on the injection point. Once the circumference 
is greater than this wavelength, fingers are able to grow with the fastest-growing 
incipient fingers having wavelength A,. 

Figure 3 is a multiple exposure photograph of a 'bubble' growing. In this example 
Q = 9.3 cm2/s; b = 0.15 cm and (T = 63 dyne/cm. The temperature was 28 "C at which 
M z  = 3.6 x 10-4 (cm4/dyne)/s. Using (15), A, and A, have been plotted as a function of 
R at  the same scale as the photograph. The exposures occurred a t  0.3 Hz. Inspection 
of the photograph reveals that the fingers appear to have wavelength A,, at their 
inception. During the time the fingers develop, their wavelength becomes greater 
than A,, but this is now beyond the realm of the stability theory considered above. 

3.2. Intermediate growth 
The subject of intermediate growth does not appear to have been tackled previously 
as a whole, presumably because of the difficult mathematics involved. In this paper 
the problem is approached by making a number of assumptions. These assumptions 
are shown to lead to a good empirical fit with experiment. 

3.2.1. Theory and assumptions. Some previous work has been done on aspects of the 
growth rate of fingers from a planar interface. Saffman (1959) and Scheideggar ( 1 9 6 0 ~ )  
have both presented calculations that indicate that a finger grows exponentially at  
its conception. For large t ,  Saffman has also shown that it is expected that t,he growth 
velocity will become constant. Gupta et al. (1973) have done experiments in which the 
growth velocity of fingers is constant with time. 

These results prompt the following conjectured solution for the length of a finger L 
in the linear situation: 

L = 2k' In ( 1  + k"etlv), (16) 

where k' and k" are to be determined. A next assumption could be to set the finger 
width equal to the finger spacing. This is reasonable in the light of the results of 
Saffman & Taylor (1958) and further backed up by Pollard, Muller & Dockstad (1975). 
The latter work refers to fingers of igneousrock intruding intoa sandstone-shale host. 
Let the extreme point of an advancing finger be referred to as the 'tip' and the 
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FIGURE 3. A multiple exposure photograph taken during the injection of air 
into a Hele Shaw cell filled with glycerine. 

extreme point of the withdrawing fluid be referred to as the ‘base’ of the finger. The 
finger base may not necessarily be the same shape as a finger tip, but, in addition to 
the last assumption, let us assume that the tip extends as far ahead of a corresponding 
stable displacement as the base lags behind. Equation (16) then suggests that the 
positions of the tip and base of a finger could be given by 

xt = v[t + k‘ In (1 + k”e*/p) ] ,  xb = v[t - k‘ In (1  + k”e t /V) ] .  (17) 
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Here the premise that 1imdxJdt = 0 is included, which becomes true as MJM, --f CQ, 

i.e. under such conditions the base of the finger eventually becomes stationary. 
Inspection of figure 3 indicates the extent to which this occurs. I n  the radial situation 
with constant injection rate, the average radius grows as the square root of time; 
hence the equations for the tip of a finger rt and the base of a finger ?+b become of the 

1+ m 

form 

3.2.2. Comparison with experiment. Using Q = 9.3cm2/s, (18b) was fitted to three 
of the finger bases from the pattern in figure 3. Least-squares fits for k’ and k” gave 
k’ = 4.0 _+ 1.0s. This suggested that k’ was essentially a constant in this experiment 
and, as a consequence, was assigned the value 4.0 s. k“ was then determined by letting 
the limit of (18 b ) ,  namely ( - Qk’ In k“/n)B, become equal to  the experimentally 
determined position of the finger bases at large t .  The values of k” were thus deter- 
mined as 0.12, 0.038 and 0.0040. The solid lines in figure 4 were obtained when these 
values were inserted in (18b), showing a reasonable fit to the data points. Persisting 
with k‘ = 4.0s, it remained to find a system that would generate a range of Ic“ that 
would fit all the finger bases. Bearing in mind the result of (13)) a given number of 
fingers can only occur after a certain radius has been exceeded. Furthermore, it 
appeared in figure 3 that the fingers had wavelength A, around the time of their 
inception and, as they developed, their wavelength became longer than A,. This led 
to the surmise that fingers occur a t  the integer steps of en, where E is to be determined 
and n,, is given by (14). Moreover, as each finger occurred, let it have had fixed ampli- 
tude 5 = R - r ,  to start with. Figure 5 is a plot of the number of finger bases en- 
countered within radius r .  A visual fit between the experiment of figure 3 (broken line) 
and the above theory (solid line) was obtained with e = 0.7 and 5 = 0.6 cm. E deter- 
mines the slope of the theoretical curve and [ determines the horizontal displacement. 
A phenomenon to note is that bubble growth is comparatively close to circular until 
the circumference divides up into about 8 fingers. 

Figure 6 was compiled with E = 0.7, 5 = 0.6 cm, Q = 9.3 cm2/s and k‘ = 4.0s. The 
solid line corresponds to the radius of a stable displacement and the dashed lines are 
the positions of the finger bases. The diamonds indicate the radii a t  which each 
additional finger occurs. 

Some remarks can be made here on the finite-sized perturbation required for the 
instability to show a significant effect in finite time. A first reaction might be to postu- 
late that perturbations are probably the size of a pore in a porous medium and, by 
analogy, would be roughly the magnitude of the plate spacing in a Hele Shaw cell. 
Perturbations are caused by inhomogeneities and the significant inhomogeneities on 
the surface of the glass of the Hele Shaw cell are probably variations in wettability. 
If there is a very small region of surface wet with fluid 1 and an adjoining very small 
region wet with fluid 2, then the interface will flex or jump a distance of the order of 
the plate spacing even though these ‘very small ’ regions may be far less than the plate 
spacing. To compile figure 5,  a perturbation of 4.0 times the plate spacing was used, 
and the author believes this is large. The author also believes that E = 0.7 is small. 
These values compensate each other itnd it is concluded that (18) may not work well 
when amplitudes are small. Deeper investigation may resolve these difficulties. 
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FIUURE 4. The positions of the finger bases with time. The solid lines are given by 

rb = 1-7{t-4*0 In [1*0+k" exp (t/4-0)]]*, 

where k' has been given the value 4.0 and k" = 0.12, 0.038 and 0.0040. The data points are the 
positions of three of the finger bases from figure 3. 

r (cm) 

FIGURE 6. The number of finger bases encountered within radius r at la,rge t .  The broken line is 
from the experiment shown in figure 3. The solid line is derived with the theory in the text. 
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FIGURE 6. An example which gives the positions of the finger bases based on the theory in the 
text. The solid line corresponds to a stable displacement with R = 1.7Jt. The diamonds indicate 
points at which a given number of fingers n can occur, where n is equal to the integral part of 
0.7[+(65R +,l)]*. The dashed lines correspond to the positions of the finger bases given by 

r, = 1.7{t- 4.0 In [ 1.0 + k" exp (t/4.0)]}3, 

where k" is generated by R - rb = 0.6 at the corresponding diamond. 

3.3. Quasi-injinite jingers 
In  order to derive an equation for the bubble surface of an infinitely long finger in a 
linear displacement, Saffman & Taylor (1958) consider a uniform flow where the 
potential function q5 and the stream function 11. are given by 

4 = Vx and y? = Vy. (19) 

They then transform from the x, y plane into the q5,$ plane and superimpose pertur- 
bations so that 

The coefficients A ,  are calculated to satisfy the boundary conditions, 

(21) 
after which the equation for the bubble surface is determined. If the origin of co- 
ordinates is taken to be the tip of the finger then this equation is (Taylor & Saffman 
1959) 

A ,  = 2( - i ) m  (1 - rymn, 

(22) 
2 

2 = -(i- l?)ln(~o~ny/2I?).  
n 
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i 
FIGURE 7. The curve ( T / T # ~  = cos 158 (small circles) compared with a finger 
resulting from the injection of air into a Hele Shaw cell filled with glycerine. 

If, instead of considering a uniform flow, one considers a point source, then 

- &  -& # = = l n r  and $=--i3. 2rl (23) 

By transforming from the r ,  0 plane into the #, @ plane, perturbations can be super- 
imposed to give (20). The boundary conditions are the same as for Saffman & Taylor’s 
analysis except that there is an additional condition that there be an integral number 
of fingers in a circumference. Thus the equation 

lnr  = - (24) 

can be derived, alt,hough I’ loses some meaning owing to h being a function of r and 
the ability of the fingers to split. By setting in/( 1 - I?) equal to a, (24) can be rearranged 
to give 

(r /r t )a  = cosn0, 

with a and n to be determined, as the equation for the finger. This equation has been 
empirically fitted to a finger giving a = 18 and n = 15 and this is shown in figure 7. 
Fingers can also be asymmetric (Taylor & Saffman 1959). Figure 8 illustrates such a 
finger. 
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i 

FIGURE 8. An asymmetric finger. 

3.4. Extended growth: splitting of fingers 
As the radius of the bubble increases, the fingers become wider until they exceed two 
critical wavelengths. At this stage they become unstable and bifurcate (figure 9).  This 
process repeats itself indefinitely as the radius grows larger and larger and a ‘tree- 
like’ st’ructure is created as the fingers ‘ branch off ’. 

4. Inward fingering 
Attention is now focused on the complementary case, corresponding to withdrawal 

of oil firom a well. This situation begins with the more viscous fluid closer to the well. 
For simplicity, only the case of an initially circular interface is considered. Two sets of 
fluids were examined: experiments with glycerine and air gave the most photographic 
contrast; experiments with glycerine and oil gave continued recovery after the less 
viscous fluid had reached the well. In both cases the glycerine corresponded to oil in 
the pramtical situation and the air or oil corresponded to ground water. This simulation 
can be made so long as there is a large viscosity difference between the fluids so that 
the viscosity of the less viscous fluid can be ignored. A pattern which resulted from the 
withdrawal of glycerine from a Hele Shaw cell otherwise filled with air is shown in 
figure LO. The initially circular interface was achieved through the stable displacement 
of air by glycerine. 
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FIGURE 9. A finger bifurcating. 

4.1. Initial growth 
The Hele Shaw cell experiments began with an initially circular interface contracting 
inwards and experiencing perturbations due to inhomogeneities, such as variations in 
wettability, on the surface of the glass plates. Analysis of the initial perturbation is 
essentially the same for withdrawal as for injection, except that, when the approxi- 
mation Ml < M, is made in (lo),  

is obtained instead of (1  1). 

remains essentially unchanged. 
As for injection, the initially circular interface begins to finger with the number of 

fingers governed by the number of times h divides the circumference. It appears in 
figure (10) that this value of h is slightly less than A,. This could correspond to the same 
mechanism which causes the finger wavelength to become larger than A, for outward 
fingering as the fingers become significant. 
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]FIGURE 10. A multiple exposure photograph of the pattern which occurs during 
tlie withdrawal of glycerine from a Hele Shaw cell otherwise filled with air. 



526 L. Paterson 

100 150 200 250 
Time (s) 

FIGURE 11. The position of a finger tip against time. The broken line is the average position of 
the interface given by R = 0.58(280 - t)t.  The solid line is the position of the finger tip given by : 
r, = 0.58(280 - t - 20 In [ 1.0 + 0.0020 exp ( t / 20 ) ]$ .  The data points + indicate the position of 
the dominant finger in figure 10. 

4.2. Intermediate growth 

As the interface contracts, (26) indicates that thenumber of allowable fingers decreases. 
The smaller fingers have their growth impeded while the more established fingers 
continue to grow. Eventually one finger dominates and accelerates into the well (refer 
to figure 10). If the average radius of the interface is given by (4), the growth equation 
can be reversed to give 

rt = (I&l/7r)B[to-t-k’ln(1 +k”et/k’)]t. (28) 

With & = 1.04 cm2/s and to = 280 s, this is shown graphically in figure 11 where the 
broken line represents the average position of the interface and the solid line repre- 
sents the position of the tip of an unimpeded finger given by (28) with k’ = 20 and 
k“ = 0.0020. The plus signs indicate the position of the dominant finger in figure (10). 

If siphoning is used to withdraw the fluids and one of the fluids is gas, then the 
siphon ceases to function soon after the gas reaches the well. However, if two liquids 
are used, then withdrawal continues after a finger has reached the well so that more 
fingers will converge into the well. The finger bases begin to assume the shape of the 
quasi-infinite fingertips associated with injection. 

During the phase beginning with the penetration of a finger to the well, i.e. where 
two liquids are being withdrawn simultaneously, the volume flow rates depend on the 
viscosit’ies and the ratios of the segments subscribed by each liquid. An example of the 
ratio of individual fluids recovered to the total volume of glycerine recovered is given 
in figure 12. Extending the analogy to flow in porous media and oil recovery, this would 
mean that ground water would appear in the recovered oil in increasing amounts. 
Nevertheless, considering only fingering, all the oil would still be recovered if one were 
prepared to pump for long enough. (However, in practice, a large fraction of the oil 
is unrecoverable owing t’o obher mechanisms such as residual saturation.) 
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FIGURE 12. Individual fluids recovered plotted against total fluid recovered 
during withdrawal when glycerine is enclosed by oil. 

4.3. Quasi-infinite Jingers 

A finger resulting from the withdrawal of glycerine from a Hele Shaw cell otherwise 
filled with oil is shown in figure 13. The withdrawal has been continued after the oil has 
reached the well, so a t  t'his stage both fluids are being withdrawn simultaneously. 
The equation 

derived in $3.3,  has been empirically fitted to the finger in figure 13 giving a = 6 and 
n = 6, and is shown by the small circles. 

(r/rb)dl = C O S ~ B ,  (29) 

5. Conclusion 
Radial fingering in a circular Hele Shaw cell has been observed and described for 

both the inject'ion and withdrawal of fluids. The significant points are the verification 
of a preferred wavelength of finger, the derivation of the form of the growth of fingers 
and the derivation of an equation to fit long fingers. Within the analysis there are 
certainly sections which would benefit from mathematical analysis a t  a deeper level. 
Nevertheless, i t  is to be hoped that these experiments will aid predictions on such 
things as how a gas bubble injected into a confined aquifer will behave, although it 
still remains to establish fingering as a real phenomenon in reservoir conditions. 

The author wishes to thank R. A. Wooding for his elucidation of the linear stability 
analysis upon which 3 3.1 is based. The author also wishes to express his appreciation 
of 0. M. Williams's comments during the preparation of this paper. 
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FIGURE 13. The curve (r/rb)6= cos 68  (small circles) compared with a finger resulting 
from the withdrawal of glycerine from a Hele Shaw cell otherwise filled with oil. 
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